Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Purinergic Signal ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941507

RESUMO

María Teresa Miras Portugal devoted most of her scientific life to the study of purinergic signalling. In an important part of her work, she used a model system: the chromaffin cells of the adrenal medulla. It was in these cells that she identified diadenosine polyphosphates, from which she proceeded to the study of adrenomedullary purinome: nucleotide synthesis and degradation, adenosine transport, nucleotide uptake into chromaffin granules, exocytotic release of nucleotides and autocrine regulation of chromaffin cell function via purinoceptors. This short review will focus on the current state of knowledge of the purinoceptors of adrenal chromaffin cells, a subject to which María Teresa made seminal contributions and which she continued to study until the end of her scientific life.

2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269831

RESUMO

Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a ß-lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.


Assuntos
Neuralgia , Canais de Cátion TRPM , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Temperatura Baixa , Modelos Animais de Doenças , Gânglios Espinais/fisiologia , Camundongos , Neuralgia/tratamento farmacológico , Ratos , Células Receptoras Sensoriais , beta-Lactamas
3.
Life Sci ; 296: 120432, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219697

RESUMO

AIMS: Nitric oxide (NO) and hydrogen sulfide (H2S) are involved in nerve-mediated corpus cavernosum (CC) relaxation. Expression of phosphodiesterase type 5 (PDE5) and type 4 (PDE4), cyclic guanosine monophosphate (cGMP)- and cyclic adenosine monophosphate (cAMP)-specific, respectively, has been described and PDE5- and PDE4-inhibitors induce cavernous smooth muscle relaxation. Whereas the NO/cGMP signaling pathway is well established in penile erection, the cAMP-mediated mechanism is not fully elucidated. The aim of this study is to investigate the localization and the functional significance of PDE4 in rat CC tone regulation. MAIN METHODS: We performed immunohistochemistry for the detection of the PDE4A isoenzyme. Isometric tension recordings for roflumilast and tadalafil, PDE4 and PDE5 inhibitors, respectively, electrical field stimulation (EFS) and ß-adrenoceptor agonist isoproterenol and endogenous H2S production measurement. KEY FINDINGS: A marked PDE4A expression was detected mainly localized in the nerve cells of the cavernous smooth muscle. Furthermore, roflumilast and tadalafil exhibited strong corpus cavernous relaxations. Endogenous H2S production was decreased by NO and H2S synthase inhibitors and increased by roflumilast. Isoproterenol- and EFS-induced relaxations were increased by roflumilast. SIGNIFICANCE: These results indicate that PDE4A is mainly expressed within the nerves cells of the rat CC, where roflumilast induces a potent corpus cavernous relaxation per se and potentiates the response induced by ß-adrenoceptor activation. The fact that roflumilast enhances H2S production, as well as EFS-elicited responses suggests that PDE4 inhibitors modulate, in a positive feedback fashion, nerve-mediated relaxation induced by gasotransmitters, thus indicating a key role for neuronal PDE4 in penile erection.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Gasotransmissores/metabolismo , Pênis/fisiologia , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Aminopiridinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Sulfeto de Hidrogênio/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Nitroarginina/farmacologia , Pênis/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ratos Wistar , Tadalafila/farmacologia
4.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216258

RESUMO

Neuropathic pain is a form of chronic pain arising from damage of the neural cells that sense, transmit or process sensory information. Given its growing prevalence and common refractoriness to conventional analgesics, the development of new drugs with pain relief effects constitutes a prominent clinical need. In this respect, drugs that reduce activity of sensory neurons by modulating ion channels hold the promise to become effective analgesics. Here, we evaluated the mechanical antinociceptive effect of IQM-PC332, a novel ligand of the multifunctional protein downstream regulatory element antagonist modulator (DREAM) in rats subjected to chronic constriction injury of the sciatic nerve as a model of neuropathic pain. IQM-PC332 administered by intraplantar (0.01-10 µg) or intraperitoneal (0.02-1 µg/kg) injection reduced mechanical sensitivity by ≈100% of the maximum possible effect, with ED50 of 0.27 ± 0.05 µg and 0.09 ± 0.01 µg/kg, respectively. Perforated-patch whole-cell recordings in isolated dorsal root ganglion (DRG) neurons showed that IQM-PC332 (1 and 10 µM) reduced ionic currents through voltage-gated K+ channels responsible for A-type potassium currents, low, T-type, and high voltage-activated Ca2+ channels, and transient receptor potential vanilloid-1 (TRPV1) channels. Furthermore, IQM-PC332 (1 µM) reduced electrically evoked action potentials in DRG neurons from neuropathic animals. It is suggested that by modulating multiple DREAM-ion channel signaling complexes, IQM-PC332 may serve a lead compound of novel multimodal analgesics.


Assuntos
Analgésicos/farmacologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ligantes , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
5.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171955

RESUMO

We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.


Assuntos
Medula Suprarrenal/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Catecolaminas/farmacologia , Células Cromafins/efeitos dos fármacos , Modelos Animais de Doenças , Epinefrina/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/fisiopatologia , Norepinefrina/metabolismo , Feniletanolamina N-Metiltransferase/antagonistas & inibidores , Feniletanolamina N-Metiltransferase/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609840

RESUMO

We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.


Assuntos
Neuralgia/patologia , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canais de Cátion TRPV/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/patologia , Animais , Capsaicina/farmacologia , Catecolaminas/metabolismo , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Modelos Animais de Doenças , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Canais de Cátion TRPV/genética
7.
Sci Rep ; 8(1): 4711, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549279

RESUMO

Nitric oxide (NO) and hydrogen sulfide (H2S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H2S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H2S generation was diminished by H2S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H2S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H2S-mediated inhibitory neurotransmission.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Bexiga Urinária/metabolismo , Adulto , Idoso , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Rolipram/farmacologia , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
8.
Pulm Pharmacol Ther ; 41: 1-10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27603231

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 µm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine ß-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K+ channels and intracellular Ca2+ desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.


Assuntos
Bronquíolos/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Histamina/metabolismo , Masculino , Morfolinas/farmacologia , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Compostos Organotiofosforados/farmacologia , Canais de Potássio/metabolismo , Suínos
9.
Neurourol Urodyn ; 35(1): 115-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327836

RESUMO

AIMS: Neuronal and non-neuronal bradykinin (BK) receptors regulate the contractility of the bladder urine outflow region. The current study investigates the role of BK receptors in the regulation of the smooth muscle contractility of the pig intravesical ureter. METHODS: Western blot and immunohistochemistry were used to show the expression of BK B1 and B2 receptors and myographs for isometric force recordings. RESULTS: B2 receptor expression was consistently detected in the intravesical ureter urothelium and smooth muscle layer, B1 expression was not detected where a strong B2 immunoreactivity was observed within nerve fibers among smooth muscle bundles. On ureteral strips basal tone, BK induced concentration-dependent contractions, were potently reduced by extracellular Ca(2+) removal and by B2 receptor and voltage-gated Ca(2+) (VOC) channel blockade. BK contraction did not change as a consequence of urothelium mechanical removal or cyclooxygenase and Rho-associated protein kinase inhibition. On 9,11-dideoxy-9a,11a-methanoepoxy prostaglandin F2α (U46619)-precontracted samples, under non-adrenergic non-cholinergic (NANC) and nitric oxide (NO)-independent NANC conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. Kallidin, a B1 receptor agonist, failed to increase preparation basal tension or to induce relaxation on U46619-induced tone. CONCLUSIONS: The present results suggest that BK produces contraction of pig intravesical ureter via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry mainly via VOC (L-type) channels. Facilitatory neuronal B2 receptors modulating NO-dependent or independent NANC inhibitory neurotransmission are also demonstrated.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptor B2 da Bradicinina/metabolismo , Ureter/metabolismo , Animais , Bradicinina/farmacologia , Feminino , Calidina/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Receptor B1 da Bradicinina/metabolismo , Suínos , Ureter/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Vasodilatadores/farmacologia
10.
PLoS One ; 9(11): e113580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415381

RESUMO

According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), measurement of enzymatic production of H2S and myographic studies for isometric force recording. Immunohistochemical assays showed a high CSE expression in the intravesical ureter muscular layer, as well as a strong CSE-immunoreactivity within nerve fibres distributed along smooth muscle bundles. CBS expression, however, was not consistently observed. On ureteral strips precontracted with thromboxane A2 analogue U46619, electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked frequency- and concentration-dependent relaxations. CSE inhibition with DL-propargylglycine (PPG) reduced EFS-elicited responses and a combined blockade of both CSE and NO synthase (NOS) with, respectively, PPG and NG-nitro-L-arginine (L-NOARG), greatly reduced such relaxations. Endogenous H2S production rate was reduced by PPG, rescued by addition of GYY4137 and was not changed by L-NOARG. EFS and GYY4137 relaxations were also reduced by capsaicin-sensitive primary afferents (CSPA) desensitization with capsaicin and blockade of ATP-dependent K+ (KATP) channels, transient receptor potential A1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide (VIP/PACAP) and calcitonin gene-related peptide (CGRP) receptors with glibenclamide, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively. These results suggest that H2S, synthesized by CSE, is involved in the inhibitory neurotransmission to the pig intravesical ureter, through an NO-independent pathway, producing smooth muscle relaxation via KATP channel activation. H2S also promotes the release of inhibitory neuropeptides, as PACAP 38 and/or CGRP from CSPA through TRPA1, TRPV1 and related ion channel activation.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Transmissão Sináptica , Ureter/enzimologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Masculino , Morfolinas/farmacologia , Músculo Liso/enzimologia , Neuropeptídeos/metabolismo , Compostos Organotiofosforados/farmacologia , Suínos , Transmissão Sináptica/efeitos dos fármacos , Ureter/citologia , Vasoconstritores/farmacologia
11.
J Sex Med ; 11(4): 930-941, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24754330

RESUMO

INTRODUCTION: Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. AIM: To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. METHODS: Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. MAIN OUTCOME MEASURES: PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. RESULTS: PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. CONCLUSIONS: PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Rolipram/farmacologia , Bexiga Urinária/efeitos dos fármacos , Adulto , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Fenilefrina/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , Transdução de Sinais/fisiologia , Citrato de Sildenafila , Sulfonas/farmacologia , Sus scrofa , Triazinas/farmacologia , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Dicloridrato de Vardenafila
12.
J Urol ; 190(2): 746-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23454157

RESUMO

PURPOSE: Because neuronal released endogenous H2S has a key role in relaxation of the bladder outflow region, we investigated the mechanisms involved in H2S dependent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: Bladder neck strips were mounted in myographs for isometric force recording and simultaneous measurement of intracellular Ca(2+) and tension. RESULTS: On phenylephrine contracted preparations electrical field stimulation and the H2S donor GYY4137 evoked frequency and concentration dependent relaxation, which was reduced by desensitizing capsaicin sensitive primary afferents with capsaicin, and the blockade of adenosine 5'-triphosphate dependent K(+) channels, cyclooxygenase and cyclooxygenase-1 with glibenclamide, indomethacin and SC560, respectively. Inhibition of vanilloid, transient receptor potential A1, transient receptor potential vanilloid 1, vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide and calcitonin gene-related peptide receptors with capsazepine, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively, also decreased electrical field stimulation and GYY4137 responses. H2S relaxation was not changed by guanylyl cyclase, protein kinase A, or Ca(2+) activated or voltage gated K(+) channel inhibitors. GYY4137 inhibited the contractions induced by phenylephrine and by K(+) enriched (80 mM) physiological saline solution. To a lesser extent it decreased the phenylephrine and K(+) induced increases in intracellular Ca(2+). CONCLUSIONS: H2S produces pig bladder neck relaxation via activation of adenosine 5'-triphosphate dependent K(+) channel and by smooth muscle intracellular Ca(2+) desensitization dependent mechanisms. H2S also promotes the release of sensory neuropeptides and cyclooxygenase-1 pathway derived prostanoids from capsaicin sensitive primary afferents via transient receptor potential A1, transient receptor potential vanilloid 1 and/or related ion channel activation.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Canais KATP/metabolismo , Músculo Liso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Acetanilidas/farmacologia , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Estimulação Elétrica , Glibureto/farmacologia , Guanilato Ciclase/farmacologia , Indometacina/farmacologia , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Fenilefrina/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Suínos
13.
J Urol ; 189(4): 1567-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23063804

RESUMO

PURPOSE: We investigated the possible involvement of H2S in nitric oxide independent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: We used immunohistochemistry to determine the expression of the H2S synthesis enzymes cystathionine γ-lyase and cystathionine ß-synthase. We also used electrical field stimulation and myographs for isometric force recordings to study relaxation in response to endogenously released or exogenously applied H2S in urothelium denuded, phenylephrine precontracted bladder neck strips under noradrenergic, noncholinergic, nonnitrergic conditions. RESULTS: Cystathionine γ-lyase and cystathionine ß-synthase expression was observed in nerve fibers in the smooth muscle layer. Cystathionine γ-lyase and cystathionine ß-synthase immunoreactive fibers were also identified around the small arteries supplying the bladder neck. Electrical field stimulation (2 to 16 Hz) evoked frequency dependent relaxation, which was decreased by DL-propargylglycine and abolished by tetrodotoxin (blockers of cystathionine γ-lyase and neuronal voltage gated Na(+) channels, respectively). The cystathionine ß-synthase inhibitor O-(carboxymethyl)hydroxylamine did not change nerve mediated responses. The H2S donor GYY4137 (0.1 nM to 10 µM) induced potent, concentration dependent relaxation, which was not modified by neuronal voltage gated Na(+) channels, or cystathionine γ-lyase or cystathionine ß-synthase blockade. CONCLUSIONS: Results suggest that endogenous H2S synthesized by cystathionine γ-lyase and released from intramural nerves acts as a powerful signaling molecule in nitric oxide independent inhibitory transmission to the pig bladder neck.


Assuntos
Sulfeto de Hidrogênio , Transmissão Sináptica/fisiologia , Bexiga Urinária/fisiologia , Animais , Feminino , Sulfeto de Hidrogênio/metabolismo , Masculino , Suínos
14.
Neurourol Urodyn ; 31(5): 688-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22460263

RESUMO

AIMS: The involvement of endothelin receptors in the contraction of the lower urinary tract smooth muscle is well established. There is scarce information, however, about endothelin receptors mediating relaxation of the bladder outlet region. The current study investigates the possible existence of endothelin ET(B) receptors involved in the relaxation of pig bladder neck. METHODS: ET(B) receptor expression was determined by immunohistochemistry and urothelium-denuded bladder neck strips were mounted in organ baths for isometric force recording. RESULTS: ET(B) -immunoreactivity (ET(B) -IR) was observed within nerve fibers among smooth muscle bundles and urothelium. BQ3020 (0.01-300 nM), an ET(B) receptor agonist, produced concentration-dependent relaxations which were reduced by BQ788, an ET(B) receptor antagonist, and by inhibitors of protein kinase A (PKA) and large (BK(Ca) )- or small (SK(Ca) )-conductance Ca(2+) -activated K(+) channels. Pretreatment with BK(Ca) or SK(Ca) channel inhibitors plus PKA blocking did not cause further inhibition compared with that exerted by inhibiting BK(Ca) or SK(Ca) channels only. BQ3020-induced relaxation was not modified by blockade of either nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX) or of intermediate-conductance Ca(2+) -activated-(IK(Ca) ), ATP-dependent-(K(ATP) ), or voltage-gated-(K(v) ) K(+) channels. Under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation (0.5-16 Hz) evoked frequency-dependent relaxations, which were reduced by BQ788 and potentiated by threshold concentrations of BQ3020. CONCLUSIONS: These results suggest that BQ3020 produces relaxation of the pig bladder neck via activation of muscle endothelin ET(B) receptors, NO/cGMP- and COX-independent-, cAMP-PKA pathway-dependent-mechanisms, and involving BK(Ca) and SK(Ca) channel activation. ET(B) receptors are also involved in the NANC inhibitory neurotransmission.


Assuntos
Relaxamento Muscular , Músculo Liso/metabolismo , Receptor de Endotelina B/metabolismo , Bexiga Urinária/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Endotelinas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Fibras Nervosas/metabolismo , Neurotransmissores/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Guanilil Ciclase Solúvel , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Urotélio/metabolismo
15.
Steroids ; 77(5): 394-402, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285851

RESUMO

OBJECTIVES: Testosterone replacement therapy improves bladder capacity in urinary tract dysfunction. There is no information, however, about the role of this steroid hormone on the muscle tension of the bladder outflow region. The current study investigated the mechanisms underlying the testosterone-induced action in the pig bladder neck. METHODS: Urothelium-denuded bladder neck strips were mounted in myographs for isometric force recordings and for simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension. The relaxations to testosterone, the non-aromatizable metabolite 4,5α-dihydrotestosterone (DHT) and electrical field stimulation (EFS) were carried out on phenylephrine (PhE)-precontracted strips. RESULTS: Testosterone and DHT evoked similar concentration-dependent relaxations only at very high pharmacological concentrations. The presence of the urothelium and the inhibition of intracellular androgenic receptor (AR), aromatase, 5α-reductase, nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX), large-, intermediate- and small-Ca(2+)-activated K(+) channels or ATP-dependent K(+) channels failed to modify the testosterone relaxations. Neuronal voltage-gated Ca(2+) (VOC) channels and voltage-gated K(+) (K(V)) channel blockers potentiated these responses. EFS evoked frequency-dependent relaxations, which were not changed by threshold concentrations of testosterone. In Ca(2+)-free potassium rich physiological saline solution, testosterone inhibited the contractions induced by CaCl(2) and the L-type VOC channel activator (±)-BAY K 8644. Relaxations elicited by testosterone were accompanied by simultaneous decreases in smooth muscle [Ca(2+)](i). CONCLUSIONS: Testosterone produces relaxation of the pig urinary bladder neck through mechanisms independent of urothelium, AR, aromatase, 5α-reductase, NO synthase, guanylyl cyclase, COX and K(+) channels. Testosterone-induced relaxation is produced via the inhibition of the extracellular Ca(2+) entry through L-type VOC channels.


Assuntos
Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Testosterona/farmacologia , Bexiga Urinária/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Di-Hidrotestosterona/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Técnicas In Vitro , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Fenilefrina/farmacologia , Potássio/farmacologia , Suínos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Vasoconstritores/farmacologia
16.
Neurourol Urodyn ; 31(1): 156-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21953705

RESUMO

AIMS: There is no information about the signaling pathways involved in the endothelin-1 (ET-1)-induced contraction of bladder neck. The current study investigates the mechanisms involved in the ET-1-elicited contraction in the pig bladder neck. METHODS: Bladder neck strips were mounted in organ baths containing physiological saline solution at 37°C and gassed with 95% O(2) and 5% CO(2) , for isometric force recording to endothelin receptor agonists, noradrenaline (NA), and electrical field stimulation. Endothelin ET(A) receptor expression was also determined, by both immunohistochemistry and Western blot. RESULTS: ET(A) receptor expression (Western blot) was observed in the muscular layer and urothelium. A strong ET(A) -immunoreactivity (ET(A) -IR) was identified within nerve fibers among smooth muscle bundles. ET-1 and ET-2 evoked similar concentration-dependent contractions of urothelium-denuded preparations. ET-3 produced a slight response, whereas the ET(B) receptor agonist BQ3020 failed to promote contraction. BMS182874, an ET(A) receptor antagonist, reduced ET-1-induced contraction whereas BQ788, an ET(B) antagonist, did not change such responses. ET-1 contractions were reduced by extracellular Ca(2+) removal and by inhibition of voltage-gated Ca(2+) (VOC) (L-type) and non-VOC channels, Rho/Rho-kinase pathway, and neuronal VOC channels. NA produced contractions which were enhanced by ET-1 threshold concentrations. ET(A) receptor blockade enhanced nitric oxide-dependent nerve-mediated relaxations. CONCLUSIONS: These results suggest that ET-1 produces contraction via muscular ET(A) receptors coupled to extracellular Ca(2+) entry via VOC (L-type) and non-VOC channels. Intracellular Ca(2+) mobilization and a Rho/Rho-kinase pathway could also be involved in these responses. ET-1-evoked potentiation on noradrenergic contraction, and neuronal ET(A) receptors modulating nitrergic inhibitory neurotransmission, are also demonstrated.


Assuntos
Endotelina-1/fisiologia , Contração Muscular/fisiologia , Transdução de Sinais/fisiologia , Bexiga Urinária/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Estimulação Elétrica , Endotelina-1/farmacologia , Feminino , Masculino , Modelos Animais , Contração Muscular/efeitos dos fármacos , Receptor de Endotelina A/fisiologia , Suínos , Transmissão Sináptica/fisiologia
17.
Pflugers Arch ; 462(4): 545-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21755285

RESUMO

BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca(2+) during action potentials. Indeed, Ca(2+)-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K(+) currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca(2+)) Ca(2+) concentrations. Despite their low open probability under these conditions (V(50) of +146.8 mV), BK channels were responsible for more than 25% of the total K(+) efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K(+) channels. The other main source of fast voltage-dependent K(+) efflux at such a low Ca(2+) was a transient K(+) (I(A)-type) current activating with V (50) = -14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca(2+). Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca(2+) concentration, and suggest that they could do so also in the presence of extracellular Ca(2+), before Ca(2+) entering the cell facilitates their activity.


Assuntos
Potenciais de Ação/fisiologia , Células Cromafins/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Bovinos , Células Cultivadas , Indóis/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia
18.
Neurourol Urodyn ; 30(1): 151-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20658543

RESUMO

AIMS: The current study investigates the mechanisms involved in nitric oxide (NO)-independent, nonadrenergic, noncholinergic (NANC) inhibitory neurotransmission to the pig urinary bladder neck. METHODS: Urothelium-denuded strips were mounted in organ baths containing physiological saline solution (PSS) at 37°C for isometric force recordings. The relaxations to electrical field stimulation (EFS) were carried out on strips treated with guanethidine, atropine and N(G) -nitro-L-arginine, to block noradrenergic neurotransmission, muscarinic receptors and NO synthase, respectively, and precontracted with phenylephrine. RESULTS: EFS (1-16 Hz) produced frequency-dependent relaxations which were abolished by the blockade of neuronal voltage-activated Na(+) channels. Nonselective and selective inhibition of COX and COX-1, respectively, and blockade of Na(+) -K(+) ATPase reduced the EFS-induced relaxations. However, blockade of COX-2, soluble guanylyl cyclase, large-, intermediate- and small-conductance Ca(2+) -activated K(+) channels, ATP-dependent K(+) channels, voltage-gated K(+) channels, cAMPc-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) failed to modify the nerve-mediated relaxations. CONCLUSIONS: The NO-independent inhibitory neurotransmission to the pig urinary bladder neck is mediated, in part, through prostanoids release from a COX-1 pathway, and through activation of the Na(+) -K(+) ATPase. PKA and PKG pathways and postjunctional K(+) channels do not appear to be involved in the NO-independent nerve-mediated relaxations.


Assuntos
Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Bexiga Urinária/fisiologia , Adrenérgicos/farmacologia , Animais , Atropina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ciclo-Oxigenase 1/metabolismo , Estimulação Elétrica/métodos , Feminino , Guanetidina/farmacologia , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , Bexiga Urinária/efeitos dos fármacos
19.
Br J Pharmacol ; 157(2): 271-80, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19309355

RESUMO

BACKGROUND AND PURPOSE: 5-Hydroxytryptamine (5-HT) is one of the inhibitory mediators in the urinary bladder outlet region. Here we investigated mechanisms involved in 5-HT-induced relaxations of the pig bladder neck. EXPERIMENTAL APPROACH: Urothelium-denuded strips of pig bladder were mounted in organ baths for isometric force recordings of responses to 5-HT and electrical field stimulation (EFS). KEY RESULTS: After phenylephrine-induced contraction, 5-HT and 5-HT receptor agonists concentration-dependently relaxed the preparations, with the potency order: 5-carboxamidotryptamine (5-CT) > 5-HT = RS67333 > (+/-)-8-hydroxy-2-dipropylaminotetralinhydrobromide > m-chlorophenylbiguanide > alpha-methyl-5-HT > ergotamine. 5-HT and 5-CT relaxations were reduced by the 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulphonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride and potentiated by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY 100135) and cyanopindolol, 5-HT(1A) and 5-HT(1A/1B) receptor antagonists respectively. Inhibitors of 5-HT(1B/1D), 5-HT(2), 5-HT(2B/2C), 5-HT(3), 5-HT(4), 5-HT(5A) and 5-HT(6) receptors failed to modify 5-HT responses. Blockade of monoamine oxidase A/B, noradrenergic neurotransmission, alpha-adrenoceptors, muscarinic and purinergic receptors, nitric oxide synthase, guanylate cyclase and prostanoid synthesis did not alter relaxations to 5-HT. Inhibitors of Ca(2+)-activated K(+) and ATP-dependent K(+) channels failed to modify 5-HT responses but blockade of neuronal voltage-gated Na(+)-, Ca(2+)- and voltage-gated K(+) (K(v))-channels potentiated these relaxations. Adenylyl cyclase activation and cAMP-dependent protein kinase (PKA) inhibition potentiated and reduced, respectively, 5-HT-induced responses. Under non-adrenergic, non-cholinergic, non-nitrergic conditions, EFS induced neurogenic, frequency-dependent, relaxations which were resistant to WAY 100135 and cyanopindolol. CONCLUSIONS AND IMPLICATIONS: 5-HT relaxed the pig urinary bladder neck through muscle 5-HT(7) receptors linked to the cAMP-PKA pathway. Prejunctional 5-HT(1A) receptors and K(v) channels modulated 5-HT-induced relaxations whereas postjunctional K(+) channels were not involved in such responses. 5-HT(7) receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency.


Assuntos
Serotonina/farmacologia , Bexiga Urinária/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Feminino , Técnicas In Vitro , Ativação do Canal Iônico , Masculino , Relaxamento Muscular/efeitos dos fármacos , Canais de Potássio/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Suínos , Bexiga Urinária/enzimologia , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia
20.
Neurourol Urodyn ; 25(5): 490-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16721838

RESUMO

AIMS: To investigate the role played by pituitary adenylate cyclase activating polypeptide 38 (PACAP 38) in the non-adrenergic non-cholinergic (NANC) neurotransmission of the pig urinary bladder neck. METHODS: Urothelium-denuded bladder neck strips were dissected and mounted in organ baths containing a physiological saline solution (PSS) at 37 degrees C and gassed with 5% CO(2) and 95% O(2), for isometric force recording. The relaxations to transmural nerve stimulation (EFS) or PACAP 38 were performed on strips precontracted with 1 microM phenylephrine (PhE). EFS experiments were carried out in the absence and the presence of guanethidine (10 microM), atropine (0.1 microM), and N(G)-nitro-L-arginine (L-NOARG, 100 microM), to block noradrenergic neurotransmission, muscarinic receptors, and nitric oxide (NO) synthase, respectively. RESULTS: EFS (2-16 Hz, 1 ms duration, 20 sec trains, 75 mA current output) evoked frequency-dependent relaxations which were reduced by the VIP/PACAP receptor antagonist PACAP (6-38) (3 microM), and by the neurotoxin of the capsaicin-sensitive primary afferents capsaicin (10 microM), and abolished by the neuronal voltage-activated Na(+) channel blocker tetrodotoxin (TTX, 1 microM). The vasoactive intestinal peptide (VIP) receptor antagonist [Lys(1), Pro(2,5), Arg(3,4), Tyr(6)]-VIP (3 microM) failed to modify the EFS-induced relaxations. PACAP 38 (1 nM-1 microM) induced concentration-dependent relaxations which were reduced by PACAP (6-38), TTX and by the neuronal voltage-gated Ca(2+) channel inhibitor omega-conotoxin GVIA (omega-CgTX, 1 microM). CONCLUSIONS: The results suggest that PACAP 38, mainly released from capsaicin-sensitive primary afferents, is involved in the NANC inhibitory neurotransmission of the pig urinary bladder neck, producing relaxation through neuronal and muscle VIP/PACAP receptor activation.


Assuntos
Contração Isométrica/fisiologia , Inibição Neural/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Acetilcolina/fisiologia , Adrenérgicos/farmacologia , Animais , Atropina/farmacologia , Capsaicina/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Epinefrina/fisiologia , Feminino , Guanetidina/farmacologia , Contração Isométrica/efeitos dos fármacos , Masculino , Antagonistas Muscarínicos/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Inibição Neural/efeitos dos fármacos , Neurotoxinas/farmacologia , Nitroarginina/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Suínos , Tetrodotoxina/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia , ômega-Conotoxina GVIA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...